複素関数論(15)留数

クラス

番 名前

【定理:m位の極であるための条件】

とかけ、かつ $\lim_{z \to a} h(z) \neq 0$ であるとき、z = a は f(z) の m 位の極である。

逆に、z=a が $\overline{f(z)}$ の m 位の極であれば、f(z) は ① の形にかけ、 $\lim_{z\to a}h(z)\neq 0$ である。

- 1. 次の問いに答えよ。
 - (1) $f(z) = \frac{e^{-z}}{(z-1)^3}$ を z=1 を中心とするローラン展開を求めよ。 z=1 における留数 $\mathrm{Res}[f(z),1]$ も求めよ。

解答:ローラン展開は

$$f(z) = \frac{1}{e(z-1)^3} - \frac{1}{e(z-1)^2} + \frac{1}{2e(z-1)} - \frac{1}{3!e} + \dots + \frac{(-1)^n}{n!e} (z-1)^{n-3} + \dots$$

 $\operatorname{Res}[f(z), 1] = \frac{1}{2e}$

(2)
$$\int_C \frac{e^{-z}}{(z-1)^3} dz$$
 ($C: |z|=2$) の値を求めよ。

解答: f(z) の孤立特異点 z=1 は C の内部にあるので、 \leftarrow この 1 文は必ずかくこと。

$$\int_C \frac{e^{-z}}{(z-1)^3} dz = 2\pi i \cdot \text{Res}[f(z), 1] = 2\pi i \frac{1}{2e} = \frac{\pi i}{e}$$

- 2. 次の関数の孤立特異点を分類せよ。理由も書くこと。また、それぞれの留数も求めよ。
 - (1) $f(z) = e^{\frac{1}{z}}$

ヒント:ローラン展開をする。

解答:ローラン展開の主要部が無限個あるので、z=0 は f(z) の真性特異点である。

Res[f(z), 0] = 1

(2)
$$g(z) = \frac{z+1}{z^2+9}$$

ヒント: $g(z)=\frac{h_1(z)}{(z-a)}$ とおいたとき、 $h_1(z)$ は z=a で正則であり、 $\lim_{z\to a}h_1(z)\neq 0$ であることを示すことで、z=a が g(z) の 1 位の極であることが言える。 1 位の極なら、 $\mathrm{Res}[g(z),a]=\lim_{z\to a}(z-a)g(z)$

ただし、この問題は $\frac{9$ 項式 であるので、極限値でのところは代入で十分である。

解答:孤立特異点は $z=\pm 3i$ である。

$$z=-3i$$
 について、 1 位の極である。 $\mathrm{Res}[g(z),-3i]=rac{3+i}{6}$

$$z=3i$$
 について、 1 位の極である。 $\mathrm{Res}[g(z),3i]=rac{3-i}{6}$

(3)
$$f(z) = \frac{z^3 + 2z}{(z-i)^3}$$

ヒント:理由は、プリント1ページ目参照

解答:z=i は f(z) の 3 位の極。 $\mathrm{Res}[f(z),i]=3i$

$$(4) f(z) = \frac{e^z}{z^4}$$

ヒント:理由は、プリント1ページ目参照

解答:z = 0 は f(z) の 4 位の極。 $Res[f(z), 0] = \frac{1}{6}$